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Exactly solvable 3D model of resonance energy transfer
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Abstract. The dynamics of two atoms coupled to the vacuum radiation field is investigated
within the framework of the resonance dipole approximation. The exact solution of the resonance
energy transfer problem is obtained.

1. Introduction

In a previous article [1], we presented a solution of a 1D quantum model describing a
system of two identical atoms coupled to a vacuum radiation field based on a generalization
of the standard Wigner—Weisskopf renormalization procedure. In particular, we had found
explicit expressions for the spectral density of radiation and the time behaviour of the atoms
plus quantized field system, provided that, in the initial state of the system, only one of
the atoms were excited, while the other and the field were in their ground state (the Fermi
problem).

In this article we study the dynamics of the atoms plus quantized field system in three-
dimensional (3D) space, when all the field harmonics are available for spontaneous decay of
an atomic excitation. This canonical problem of the quantum theory of radiation has been
investigated in numerous works employing various different approximations and approaches
[2-16].

In the same manner as in [1], we use a novel approach based on an exact diagonalization
of the model Hamiltonian, in conjunction with a generalization of the standard Wigner—
Weisskopf renormalization procedure, which allows us to obtain the solution of the
dynamical problem in a trivial way. One of the characteristic features of our approach
will be the use of the spherical harmonic representation in the description of the field. In
this representation, the field operators depend on one continuous variable (a frequency)
and two discrete variables (an angular momentum and a projection thereof on an axis
of quantization). Therefore, within the framework of the resonance approximation, the
model can be reduced to a one-dimensional (1D) model in which a continuous variable
(corresponding to the radius of the ‘wave front’) plays a role as the 1D coordinate.

Our results confirm the approach of Milonni and Knight [9], however we are able to
show that the time evolution of the atomic wavefunctions is such that causality is indeed
preserved. The approach developed here can be seen to have application in the study of
dispersive media or photonic bandgap materials [17], which have been doped with two-level
atoms. In particular, the use of the spherical harmonic representation leads to a simple set
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of equations describing a photon-impurity band for an ordered system of two-level atoms,
which have been placed within dispersive media or photonic bandgaps [18]. We also
anticipate that this approach could be also be applied to studies of many-particle eigenstates
of the two-impurity Kondo and Anderson models, as well as those of a two-atom optical
system.

As a physical example of what our result implies, consider any solid matrix with an
impurity uniformly distributed in it. Then causality would demand that if one excited only
one impurity atom, then no other impurity atom would become excited faster than the time
required for a light signal to travel from the excited atom to that atom. This is exactly what
our result demonstrates.

2. Atom-field coupling

It is convenient to choose the system of coordinates where the atoms are located on the
z axis, with the origin positioned midway between the atoms. Then, in Cartesian coordinates,
the atoms have the coordinates= a = (0, 0,a) andr, = —a = (0,0, —a) where 2 is
the atomic separation.

In what follows, an atom is regarded as a quantum system which has a ground state
of angular momentuny; = 0 and an excited state of angular momentgn= 1. The
latter state is triply degenerate with three possible values fortbemponent of angular
momentum,M, = —1,0,1. Then, for the transitiodf, = 0 < M; = 0, the only non-
zero matrix element of the atomic dipole operator is h@omponent, while for two other
transitions,M, = +1 <+ M; = 0, the non-zero matrix elements lie in the plane.

As usual the atomic dipole operator is expressed in terms of the spin operators

= (0}, 07,00); oFf =0 +io, which satisfy the commutator

[0}, 0]] =84 €/ c (2.1)

(where &* is the unit antisymmetric tensor and the index= 1, 2 numbers the atoms) as
follows:

d,=de, o) +0,) (2.2)
for the transition O« 0, and
1+i 1—i
d, = d< ;_ e_o + — e+c7a_> (2.3)

for the transition 1« 0, wheree. = e, £ ie, andd is the reduced matrix element of the
dipole operator [19].

It should be emphasized that if the ground state of the transition under consideration is
also degenerate/{ # 0) then the dipole operator cannot be expressed in terms of the Pauli
spin matrices and instead the full Lie algelig4) would have to be considered [20].

The electric—dipole interaction between the two-level atoms and quantized electromag-
netic field is given by the operator

V = —[d1E(a) + do E(—a)] (2.4)
whereE(a) and E(—a) are the operators of the electric field at the points +a. In what
follows, it is convenient to use the spherical harmonic representation [21] for the electric

field operators. In this representation the operators of the electric field are expanded in
terms of the spherical harmonic vectors

RS I DY [, + B @)

a=e,m j=1 m=—j
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where the operators® ™ (¢* ), obeying the commutation rules

wjm wjm
() (@)
[Ca)]m’ wJ; ] - 277"8((1) w )80«1’6” amm (26)

create (annihilate) a photon of an electric £ ¢) or a magneticle = m) type with a
frequencyw, an angular momentum and projection thereofi. The Fourier component

E(a) (k) = /d3}” E(ol) (r)e —Ik'r (27)

wjm wjm

of the funcUonE(‘“ (r) is given by @ is a unit vector in the direction df)
21\ 2
B = ar (Z) 5w - v o). (2.8)
w
The spherical harmonic vectol§fﬁ‘)(n) are also defined in [21].
Since only the photon states with a frequenciying near the transition frequeney;»
(and within the widthl" <« w1,) interact effectively with an atom, we can ignore the photon
states further out (the resonance approximation). In our formalism this means, first of all,
that the termsﬁczjm and o ~c,jm in the operatorV can be omitted. Then, the model
Hamiltonian takes the initial form

H=Hy+V (2.9

Ho = wiz(0f + 05 +1) + Z/ Sﬁ: C((j;)m (2.10)

ajm

v=>_ / oy (@) / don [} () (5, (0 7™ 4 o e omm)

ajm

+ T[(a)* (n) c(a.)+ (O_l —iwa-n + 0, elwa n):l (211)

wjm

wherey (w) = 4w3d?/3. The functions:rfz)(n) are different for different transitions. For
the transition 1« 0 '

. 1+ 3\Y? .
T (1) = =i <&T> e YV (n) (2.12)

and it contains both electric and magnetic components, while for the transiter00
3\ 12
i (n) = —i (8) . Y (n) (2.13)
T

but yrj(f,:)(n) = 0, because the electric field of a magnetic photon is perpendicular to the
dipole moment of the transition.

3. Renormalization procedure

The ‘particle’ number operator of the model
dow L@+
LEDI I ED oy Qi @)
a=12 T[

commutes with the Hamiltonian (2.9)—(2.11), therefore, all the model eigenstates can be
classified with respect to the number of ‘particles’, or eigenvalues of the opévator
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The vacuum state of the modil)
¢ 10y =010)=0 (3.2)

wjm
contains no particleN|0) = H|0) = 0. The subject of our interest in this article is
one-patrticle eigenstates,

N[W;) =1-[|Vq) H|W1) =2 - [W) (3.3)

where is eigenenergy, which we look for in the form
d
W) = [em +E0 + Y / ‘“fj,j‘; ;};} 10). (3.4)
ajm
Then, the Sclidinger equatiofH — A)|¥) = 0 takes the form
(@ = W) £, +Vy (@) [ dop, 70 (M)[E1()eT™* ™ + £p(A)E”*™] = 0 (3.5)
(@12 — DER) + ) / @) / dop, ;) ()€™ £1%) () = 0 (3.6)
ajm

(12— MEM) + Y / 22y (@) / doy, 7o) (n)e” ' ™ £1% (1) = 3.7)

ajm

The general solution of (3.5) is given by

(o) (n)e—lwa n

£ = 2n8(0 — YL, + 7”/(5 o) / doy, 7

a)]m w+i 0 ]m
+_Visz<x> / dop, 7" (n)€“*™ (3:8)

wherey® is an arbitrary function. Substituting equation (3.8) into (3.6), (3.7) and making

wjm

use of equatlons (A.5), (A.6) from the appendix, we find

(A — w12 +1911(A)E1 (V) +i912(M)E2(A) = C1(R) (3.9)
(A — w12 +1922(A)E2(A) +i921(M)E1 (M) = C2(R) (3.10)
where
G0 =y Y v, / doy, 7jy, (n)€*e™ (3.12)
ojm
Co(0) =y (L) Z v, f doy, 7/ (n)e e (3.12)
ajm
The functions
> d
Jun =02 = 273)' % (3.13)
_ _ % dw y(w) 3 iwa-n
Oi2=0o1= /0 P — f doy, <87T sir? 9) & (3.14)

for the transition O« 0, and

— — * do )/(C!)) 3 _1‘ i iwa-n
glz—gzl—fo %m/don [&T (1 25|n20>:|e2 (3.15)
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in the case of the transitions1 <> 0, contain the contributions of the atom—field interaction
(the effective interatomic coupling) to the atomic wavefunctions.

The integrals over frequency in (3.13)—(3.15) diverge and have to be renormalized. Let
us first analyse the expression (3.13), which could be rewritten in the form

0 0

guoy = [ g vl [T e v, (3.16)

In accordance with the standard Wigner—Weisskopf renormalization procedure, we replace
(@) — y = 3d°w;, = constant (3.17)

and omit the second integral, because this integral describes the purely real correction to

the atomic transition frequency (Lamb shift), which cannot be properly treated within the

framework of our semi-relativistic model, since it is not relativistic. Then the first integral
yields the standard Wigner—Weisskopf expression

O11=022=3¥ (3.18)

that leads to the Lorentzian shape of a radiation spectrum for a single atom in empty space.
Turning to equation (3.14), after the integration over solid angles, it takes on the form

® do y(w) 3 sinwl
= = — — coswl 3.19

B12 =021 /0 2tiw— 7 —10 (@2 \ ol (3.19)
or upon using the WW renormalization procedure

Ou=0a=L-1I (3.20)
I 3y /"O do 1 sinwl! coswl
1= (w121)2 —00 2riw— A — 10 wlzl
3 vy i -
= 1+ — )™ 3.21
2 (w12l)? ( * w121> (321)
3 *d 1 sinwl
, = 7”/ o2 (SN s (3.22)
(wlzl)2 0o 2miw+ A\ wil

where! = 2a is the interatomic separation. The resonance approximation for the one-
atom problem assumes that the main contribution to the atom—field coupling comes from
photon states lying in an narrow vicinithA ~ y <« wi2, near the transition frequency
w12. However, in our two-atom problem, there is a new parametes], involving the
interatomic separation, which appears. This is because photon states with frequencies
w ~ 7! can contribute to the effective interatomic coupling.

For wiol > 1, the second integrdb contains an additional smallness in the parameter
(w12)~* compared with the first ondy, and could be omitted. In what follows we confine
ourselves to the case of long interatomic distaricesw;,. Then, for the transition @ 0
we have

3 1 i '
= == + g . 3.23
012 =021 2)/ ((wlzl)z (w121)3> ( )

In an analoguous way for the transitiottd <> 0 we also find
3 i 1 i -

=gn=y|-—— g 3.24

Ho == gy ( wd (@ <w121)3> (3:24

Taking into account that we already omitted the intedggalonly the leading first terms of
expressions (3.23), (3.24) should be retained.
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It should be emphasized that the omitted integfal contributes only to the
renormalization of the atomic transition frequency and does not affect the time behaviour
of the system which is the main subject of our interest in the present paper. For short
interatomic distancesyiol < 1, the contribution off, can be taken into account by means
of a separation into symmetric and antisymmetric eigenstates as was done in [1]. We will
return to this question in the end of the next section.

It can easily be seen that the above renormalization procedure is equivalent to putting
y(w) — y(w12) = constant with an extension of the integration over frequency in the
model Hamiltonian, (2.9)—(2.11), to a lower limit efco. Then, defining new operators

o o da) o iw. o * o —iw.
E;m)(x) =f gc;j)mé : cc(uj)m :/ dx e;m)(x)e e (3.25)
—0oQ —0oQ
which have the commutation relations
[efe) (1), €)™ ()] = 8 — X)8uar81 S (3.26)

the effective Hamiltonian takes the form

oo
P z H o a o
Ho = w1p(0f + 05 +1) =i ) / dx ejm”(x)aejm) (x) (3.27)
—0Q

ojm

oo
V= WZ/ dx [v;;fj @€ () o7 + v ()€ () o +uly) (epe (x) o5
—00

ajm

+ u}jf"(x)e}i”(x)a{] (3.28)
where the atomic form-factors are given by
@ * do jo(x—a-m) (@) @
Vi (X) = — { do,, ¢ 7.7 (m) = | dop §(x —a-n)m;? (n) (3.29)
m e 271, jm Jm
(@) > do jo(x+a-mn)__ (@) (o)
Wy, (X) = — | do,, € 7.7(m) = [ do, §(x +a-n)mr;”’ (n). (3.30)
m s 21 jm jm

The variablex can be viewed as a coordinate along an arbitrary ray, passing through the
origin of the coordinate system. Then, the regior: 0 corresponds to ingoing spherical
waves, while the region > 0 corresponds to outgoing waves.

According to the WW renormalization procedure, the last step in (3.29) and (3.30) is
incorrect. What we have done is formally to carry out the integration over frequmasfoye
the renormalization procedure was completed. The last integration in (3.29) and (3.30) is
incorrect per the WW renormalization procedure and when done, leads to a loss of causality,
because the atomic form-factors do not vanish for griy< a. The correct procedure is to
first integrate over the solid angles and then, before the final integration over frequency is
done, replace» with w;, everywhere except in any exponential factors. Moreover, strictly
speaking, the resonance approximation cannot be applied directly to the model Hamiltonian
until after all angular integrations have been done. This is becalusentains all spherical
harmonics, and, hence, the integration over a solid angle can contain high powers of the
frequency,(wl)/, when j > wl. In what follows, we will use only the first expressions in
(3.29) and (3.30). Then we will apply the resonance approximation to all expressions for
physical values only after any summation over the spherical harmonics has been evaluated.
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4. One-particle eigenstates

In terms of the operators (3.25) the expression for one-particle eigenstate (3.4) is rewritten
as follows:

W) = |:é;‘101+ + &0 + Z/ dx fj_(l;’;)(x)ej(;)+(x):| |0). (4.1)
ajm Y~

Then, the Sclirdinger equation for the photon Wavefunctioﬁg)(x) and the wavefunctions
of the atomic excitationg, takes the form

.d o )% )
(Idx + x) Fd @) = Sy (x) + &u ()] (4.2)
(ot =y Y [ dr Do 43)
ajm ¥~
(ot =y Y [ gD eouo. (4.4)

ojm

The substitution
falx) = e~ / dop, (e (1) (x) (4.5)
leads to the simple equation fer,(x):

. d . .
—Ia¢>n(x) + Sy [E eS8 (x —a-n) + £ ™5(x +a-n)] =0 (4.6)
with the general solution
Pn(x) = bp — iV [E1€6770(x —a-n) + 660 (x +a-n)]  (4.7)
where
1 x>0
O(x) =
0 x <0

and ®,, is an arbitrary function. Inserting equations (4.5), (4.6) into (4.3), (4.4) and taking
into account equations (A.5), (A.6) from the appendix, for the atomic wavefundfjoose
again obtains

(A — w12 +1iy /21 +iygsa = /¥ C1 (4.8)
iyggr + (A — w12 +1y /25 = /Yy C2 (4.9)
where the integral dx 6 (x)8(x) is taken to be%, and

Ci1= 3 / do,, sirto @,e*em (4.10)
8r
3 . ira

C,=— [ do, sifd &,e*2m (4.12)
8r

g = % / do,, sir?06(a - n) " (4.12)
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for the transition O 0, or

C1= % / doy, (1 — %sinz 9) P, eran (4.13)

Cr = % don, (1 - %sin‘? 9) Ppe e (4.14)
3 1 H ila-n

g()»)=§/don 1—§sm20 O(a-n)€ (4.15)

for the transitionst1 <> 0.
In the case of two identical atoms considered here, equations (4.8), (4.9), it is convenient
to rewrite for the value§. = & + &

[h — w12 +iy (G + 96 = V¥ Cy (4.16)
(A —wn+iy(3 — 9l = /yC- (4.17)
where
Cy = % / do,, Si?Od,,(e**™ + g i*am) (4.18)
and
3 1. ira- —ira
Ciz—/don 1— Zsirf6 ) @, (22 £ e ham) (4.19)
8r 2

for transitions O« 0 and+1 <> 0, respectively. Now it can easily be seen that the choice
of an arbitrary function in the form

D, =" e e (4.20)
yields C, = 2(1+ 2¢’), C_ = 0 and, hence, leads to the symmetric solution
1 2r®
S C R 4.21
E1=6=¢& 7= Qe 47O (4.21)
r—Q® —i9sgn(x —a-n) |
@@© _ (@ A(x—a-n)
Tim = = /do" Tjm [ A_ QO 1ir® e (4.22)
b= QO —irOsgn(x +a - n) éum.m} (4.23)
A— QO +ir®
where
Q¥ =wp+yd’ r®=73y@1+2d (4.24)
and g =RegX), g’ =Img(})
1 x>0
sgn(x) =4{ 0 x=0
-1 x < 0.
The choice

@, = dram _ g ram (4.25)
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(and, henceC, =0, C_ = 2(1 — 2g)) leads to the antisymmetric solution

@ 1 are 4.26
51 - _52 - é: - ﬁw ( . )
r—Q® —ir@®sgnx —a-n) |
@@ _ @) Mx—an)
fim 0= /don i |: O 1@ é (4.27)
_ o @ o isgn: +a-n) é“”a'")] (4.28)
A— Q@ 4 ir@
where
Q® =wp—yg T =ly1-2g). (4.29)
Thus, we find for one-particle eigenstates corresponding to the eigenenergy
his) = [s@ Mo +o3)+ ) / b fin® (x, me}iﬁf*m} 0) (4.30)
ajm Y

oo
A as = |:§(a9(k)(af —o)+ > / dr fi)® (x, ,\)e;;‘;”(x)} |0) . (4.31)

ajm Y =X

These states compose the complete orthonormal set of one-particle states and will be used
in what follows to study the model's dynamics. Here, omitting standard but tedious
calculations, we present the expressions for the scalar products, namely

r©
(s M|h0) =81—8,0:8(A — X))o =s,as (4.32)
14

Finally, we need to evaluate the functioi\y, equations (4.12), (4.15) in an implicit
form. Keeping in mind the discussion in the end of the previous section, one has to treat
the factorf(a - n) exp(ira - n) in an integral form:

% dw eiwa~n
oo 2l w— A — 0
and to integrate first over a solid angle, neglecting dhdependence in the denominator
of the expression thus arising in accordance with the resonance approximation. Then, the
remaining integration over the frequency yields the correct expressions (3.23) and (3.24)
which have straightforwardly been derived from the model Hamiltonian (2.9)—(2.11).

To obtain the correction to the resonance transition frequency due to the effective

interatomic coupling one simply needs to replacg in expressions (4.24) and (4.29)
by

3y * dw 1 sinwl
(s
= - L= - — — CcoSwl 4.34
@1z = 2T 2 =012 (w12l)? /o 21 w 4+ w12 ( w12l > ( )

6(a-n)e**m = (4.33)

3 * dw 1 sinwl
a)g_a;) =wi+ b =wp+ 7(601)2/1)2 /0 i o+ o T on < wonl — COSa)l) (4.35)
for the symmetric and antisymmetric eigenstates, respectively.

Thus, we have found the one-particle eigenstates of the model under consideration
within the framework of the resonance approximation. In section 5 we will show that the
Wigner—Weisskopf renormalization of the two-atom problem preserves causality, as must
occur, in order for any renormalization procedure to be physical.
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5. The Fermi problem

Further analysis of the 3D problem is obviously completely equivalent to that of the 1D
model [1]. Indeed, the initial state of the atoms plus field system,

lIn) = o7710) (5.1)

is represented as a linear superposition of the one-particle eigenstates of the model,

1
lIn) = Z/ A<“>(A)|x> A“Wx):%m (5.2)

o=a,as

and, hence, the dynamics of the in-state is determined by

| (1) = exp(—iHn)lin) = / B AD ey (53)
Then, the probability amplitudes to ;n;athe atoms in the excited state are given by
$1(t) = (Oloy |P(1)) = — /: % (r;?») + r_;)> e M (5.4)
#2(0) = Oy |00 = - [ : o (V;A) - rjk)> o i
=y/:;jir+(g§:)mé“ (5.5)

where
re=a—o0f+iyG+on) o =a-ol +iyG-ogn).  (5.6)

Here we have omitted terms containing the functiefigt), because all the zeros of the
functionsr. (1) lie below the real axis, and hence do not contribute to the integral for any
t > 0.

It can now easily be seen that the probability amplitude for finding the second (initially
unexcited) atom in the excited state vanishes on the intervalrO< [, as it should be, in
accordance with the causality principle.

The integrals in (5.4), (5.5) have the form

ot [e'e] d)\, e—i)»l
re() = A +i(y/2)(1+ b(1)et+ely (5.8)
where
i 1
b)) = -3 —_—
= (wlzl + (60121)3>
and

o 2 a)lzl (0)121)2 (CUIZI)3

for the transitions @ 0 and+1 < 0, respectively. It can easily be seen that these integrals
are absolutely equivalent to that calculated in our previous article [1] devoted to the 1D
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model of the resonance energy transfer. So, we can immediately present the following
expressions for the atomic wavefunctions:

dVl

(n) _ a—i(wi2—iy/2)(t—nl)
=€ — F F_ 5.9
¢y (1) o (dz”[ () + (z)]) i (5.9)
o () = oo L (Bp o) p ) (5.10)
? 2n! \dz" o
where
e*()’/z)blz
Fr @) = T 0 g w20 (5.11)
v /b2
F_(z) = (5.12)

1 — ze/2ibz g-ilwr—iy/2l *

Here the temporal axis € ¢ < oo is divided into an infinite set of temporal zones, i.e. the
temporal variable is represented as

t=t+nl (5.13)
wherer € (0,/) andn =0, 1, ... . Carrying out the elementary calculations, the expressions
for the atomic wavefunctions can be rewritten in the explicit form
M, N _ — (n—m)! v " _am o ymT ami(wia—y /2 (t—ml)

o= " (56@)" [t =0y + @ —miy"]e (5.14)
() _ - (l’l - m)l 14 " m __ _ mY o—i(w12—y/2)(t—ml)

o0 (v) = DIET (Eb(l)) [ml — )" = (t — miy"] e @2 . (5.15)

The functionsp” and¢y” contain only evens = 2k) and odd £ = 2k + 1) terms of the

sum, respectively. Therefore, the functiapff) is not changed at the odd points= 2k + 1,
while the functiongs” is conserved at the even points= 2k.
In the limiting case of large interatomic distanceés>» wp,, one can restrict a

consideration by the first several temporal zones. Then, we have

- 1 0<t <2
P1(t) = e 'lg V! o (5.16)
1— 1 (Lyb))? (¢ — 21)2ePiniv/2! 20 <t <4l
iwiot ¢ 0 0 < 1< l
Po(t) = e e’ . (5.17)
—Iyb()(t — Hlv/A! 1<t<3l.

The ‘retardation’ effect is obvious to take place at the moment of time 2/ and to be
repeated in the period = 2/.

Finally, it should be noted that the results for the 3D model is distinctly different from
those of the 1D model. In the 3D model, we saw the resonance transition, via the definition
A2 = a)l‘zl, appearing also in the role of a characteristic interatomic separation (wavelength).
On the other hand, in the case of the 1D model [1], an interatomic influence extended up
to even macroscopically large interatomic distanées,y 1. The difference is that in 3D
waves can disperse more easily, whereas in 1D they are channelled.
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Appendix

Here we demonstrate the method of the summation over spherical harmonics which is used
in this article. For instance, for the transition<® O the characteristic expression has the
form

/ 3 /
G =D ) Tm(n) = o (e: Va)(e: V) D(n, n) (A.1)
jm
where the function
1
Din.n) =) — Y @) Yu(n) A2
; jG+1D ! A2

is obviously the Green function of the angular part of the Laplace operator
ApD(n,n)=8(n—n') (A.3)

and, hence, depends ¢n — n’) only. Then, the differential operator in (A.1) is rewritten
as follows:

2
(e;+ Vn)(e. Vi) = —(e, - Vp)(e, - Vp,) = SilfO A, + 88752 (A.4)
and we find
G = 3 (sinzea( —-n')+ i D(n — ’)) (A.5)

where the contribution of the second term vanishes after the integratiorpobecause in
the geometry of our problema||Z.

An analoguous result can be obtained by a similar, but more tedious way for the
transition+1 < O:

G= ) Y aim)mm) = % (1 — %sinz 9) stn—mn). (A.6)

a=e.m jm
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